C-Phosphorylation of formaldehyde and crotonaldehyde N, N-dimethylhydrazones

A. A. Tolmachev, A. S. Merkulov, A. A. Yurchenko, M. G. Semenova, and A. M. Pinchuk*

Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 ul. Murmanskaya, 252660 Kiev, Ukraine.
Fax: 380 (044) 543 6843. E-mail: iochkiev@sovamua.com

The first representatives of hydrazones having trivalent phosphorus at the azomethine carbon atom or the carbon atom vinylogous to it were synthesized by reactions of formaldehyde and crotonaldehyde N,N-dimethylhydrazones with PBr_3 and diphenylchlorophosphine in the presence of organic bases. Some properties of the compounds synthesized were studied.

Key words: aldehyde N, N-dialkylhydrazones, trivalent phosphorus, phosphorylation.

The paper by M. I. Kabachnik et al. reporting on the synthesis of the first representatives of hydrazones containing a phosphoryl group at an azomethine carbon atom gave rise to a new line of research in the chemistry of organophosphorus compounds: the chemistry of C-phosphorylated azomethines. Subsequently C-phosphorylated hydrazones have been synthesized both by the Kabachnik method² and by fundamentally different methods.3-5 However, all the existing methods for the synthesis of C-phosphorylated hydrazones permit preparation of only derivatives of pentavalent phosphorus. Meanwhile, in numerous publications concerning the chemistry of aldehyde N, N-dialkylhydrazones, it has been shown that, owing to the conjugation of the lone electron pair of the amine nitrogen atom with the multiple bond, these compounds act not only as N-nucleophiles but also as C-nucleophiles and readily undergo electrophilic substitution at the C atom, for example, formylation⁶ and acylation⁷. It can be suggested that phosphorylation of aldehyde N, N-dialkylhydrazones with phosphorus trihalides in basic media would enable the synthesis of the corresponding hydrazonoyldihalophosphines and thus make accessible various derivatives containing a PIII atom at an azomethine carbon atom. The first results of our studies along this line were published in brief communications.8,9

Results and Discussion

We found that formaldehyde N,N-dimethylhydrazone is phosphorylated by PBr₃ at the azomethine carbon atom. The reaction occurs under mild conditions (20 °C) in the presence of pyridine as a base (Scheme 1). The resulting hydrazonoyldibromophosphine 1 is stable only in solutions and has been characterized only by ³¹P NMR spectra (δP 174.5). When compound 1 reacts with an excess of HNMe₂, diaminophosphine 2 is formed in

good yield. The structure of compound 2 was proved by ^{1}H and ^{13}C NMR spectra. The presence of the spin-spin coupling of the P atom with the azomethine C atom ($^{1}J_{PC}=22.3$ Hz) and with the proton at this C atom ($^{2}J_{PH}=28.8$ Hz) is especially significant. Formaldehyde N,N-dimethylhydrazone can also be phosphorylated by a less reactive phosphorylating reagent, Ph₂PCl, to give tertiary phosphine 3, which L a low-melting crystalline compound stable to air.

Scheme 1

Phosphorylation of crotonaldehyde N,N-dimethyl-hydrazone involves the C(3) atom and yields compound 4 (Scheme 2). This is the normal reaction route for electrophilic substitution in N,N-dimethylhydrazones of α,β -unsaturated aldehydes. ¹⁰ Compound 4 polymerizes on attempted isolation; it was characterized only by ³¹P NMR spectroscopy (δP 175.0) and identified after transformation into more stable ester 5 and amides of the corresponding phosphonous acid 6.

Due to the lower reactivity of crotonaldehyde N,N-dimethylhydrazone, caused by the lengthening of the conjugation chain with the amino group, and to the destabilizing action of the electron-donating methyl group, we

Translated from Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1797-1801, September, 1998

Scheme 2

R = Me(a), Et(b)

1750

were unable to conduct phosphorylation by less reactive phosphorylating reagents. Thus crotonaldehyde N, N-dimethylhydrazone does not react with Ph2PCI, and its reaction with Ph2PI gives a complex mixture of nonidentified products.

The compounds 1-6 synthesized are the first representatives of hydrazones having a PIII atom at an azomethine carbon atom or at a carbon atom vinylogous to it. In addition, C-phosphorylated formaldehyde N, N-dimethylhydrazones can be regarded as derivatives of a previously unknown type of compounds with a formyl group at a trivalent phosphorus atom.

Using traditional methods for increasing the valence, we converted compounds 2, 3, 5, and 6 into derivatives of pentavalent phosphorus 7-11 (Scheme 3).

It was found that the reactions of diaminophosphine sulfides 11a,b and 7 with Mel involve different reaction sites, viz., the N atom of the dimethylamino group in the former case (the reaction affords ammonium salts 12a,b) and the S atom of the thiophosphoryl group in the latter case (the reaction gives phosphonium salt 13) (Scheme 4). The different routes of methylation of compounds 11a,b and 7 are apparently due to the fact that in the former case, the -1-effect of the thiophosphoryl group has a lesser influence on the basicity of the dimethylamino group of the hydrazone fragment and to the fact that steric hindrance around the S atom is more significant.

The structure of compound 13 was confirmed, in addition to the ³¹P NMR spectra, by the presence of signals corresponding to the methyl group at the S atom in the ¹H and ¹³C NMR spectra: δ H 2.48 (d, J_{PH} = 15.2 Hz); δ C 12.19 (d, $J_{PC} = 3.5$ Hz). The dimethylamino group of the hydrazone fragment of salt 13 is exhibited as a broadened singlet at 3.37 ppm in the ¹H NMR spectra and is not manifested at all in the

Scheme 3

11: $R = NMe_2$ (a), NEt_2 (b), OEt (c)

Scheme 4

11a--c

 $R = NMe_2(a), NEt_2(b)$

$$(Me_2N)_2P$$

$$H$$

$$NMe_2$$

$$N$$

$$H$$

$$NMe_2$$

$$Mel$$

$$N$$

$$H$$

$$NMe_2$$

$$N$$

$$H$$

$$NMe_2$$

$$13$$

 13 C NMR spectra. This is probably caused by the presence of a barrier to rotation around the N-N bond arising due to a substantial contribution of the resonance structure 13' stabilized by the -I-effect of the phosphoryl group. Note for comparison that the 1 H NMR spectra of ammonium salts 12a,b contain a narrow singlet in the region of 3.50 ppm, and the 13 C NMR spectra contain a signal at 56.2 ppm corresponding to the methyl groups at the ammonium N atom.

$$(Me_2N)_2P \overset{\text{S-Me}}{\bigoplus} I^{\scriptsize \bigcirc} \\ H \qquad NMe_2 \qquad H \qquad NMe_2$$

$$13 \qquad \qquad 13'$$

As should be expected, imino phosphonate 8 is also methylated yielding phosphonium salt 14 (Scheme 5).

$$(Me_{2}N)_{2}P \longrightarrow Me$$

$$+ Mel \xrightarrow{C_{6}H_{6}} Me$$

$$+ Mel \xrightarrow{Me} Me$$

$$+ Mel \xrightarrow{Me} Me$$

$$+ Mel \xrightarrow{Me} Me$$

$$+ Mel \xrightarrow{N}_{2}P \oplus Me$$

$$+ Mel \xrightarrow{N}_{2}P \oplus Me$$

$$+ Mel \xrightarrow{N}_{2}P \oplus Me$$

$$+ Mel \xrightarrow{N}_{1}P \oplus Me$$

$$+ Mel \xrightarrow{N}_{2}P \oplus Me$$

$$+ Mel \xrightarrow{N}_{1}P \oplus Me$$

$$+ Mel \xrightarrow{N}_{1}P \oplus Me$$

$$+ Mel \xrightarrow{N}_{1}P \oplus Me$$

$$+ Mel \xrightarrow{N}_{2}P \oplus Me$$

$$+ Mel \xrightarrow{N}_{1}P \oplus Me$$

$$+ Mel \xrightarrow{N}_{2}P \oplus Me$$

$$+ Mel \xrightarrow{N}_{1}P \oplus Me$$

$$+ Mel \xrightarrow{N}_{2}P \oplus Me$$

$$+ Mel \xrightarrow{N}_{1}P \oplus Me$$

$$+ Mel \xrightarrow{N}_{2}P \oplus Me$$

$$+ Mel \xrightarrow{N}_{1}P \oplus Me$$

$$+ Mel \xrightarrow{N}_{2}P \oplus Me$$

$$+ Mel \xrightarrow{N}_{1}P \oplus Me$$

$$+ Mel \xrightarrow{N}_{2}P \oplus Me$$

$$+ Mel \xrightarrow{N}_{1}P \oplus Me$$

$$+ Mel \xrightarrow{N}_{2}P \oplus Me$$

$$+ Mel \xrightarrow{N}_{1}P \oplus Me$$

$$+ Mel \xrightarrow{N}_{2}P \oplus Me$$

$$+ Mel \xrightarrow{N}_{1}P \oplus Me$$

$$+ Mel \xrightarrow{N}_{2}P \oplus Me$$

$$+ Mel \xrightarrow{N}_{1}P \oplus Me$$

$$+ Mel \xrightarrow{N}_{1}$$

For all phosphorylated hydrazones, syn—anti-isomerism is theoretically possible, and for crotonaldehyde hydrazones, cis—trans-isomerism is possible as well.

Table 1. Physicochemical constants, ^{31}P NMR spectra, and elemental analysis data for compounds 2, 3, and 5-14

Com- po-	Yield (%)	B.p./°C (p/Torr) [m.p./°C (solvent	δP (solvent)	Found Calcu		Molecular formula
und		for crystallization)]		P	N	
2	50	69—75 (0.08)	84.4 (C ₆ H ₆)	16,45 16.28	30.01 29.45	C ₇ H ₁₉ N ₄ P
3	75	[48-50 (heptane)]	18.1 (C ₆ H ₆)	11.73 12.08	<u>10.62</u> 10.93	$C_{15}H_{17}N_2P$
5	31	87—90 (0.03)	166.6 (hexane)	13.03 13.33	<u>12.27</u> 12.06	$C_{10}H_{21}N_2O_2P$
6a	47	105—108 (0.03)	105.6 (hexane)	<u>13.49</u> 13.45	23.97 24.33	$C_{10}H_{23}N_4P$
6b	52	133—135 (0.04)	102.3 (C ₆ H ₆)	11.13 10.81	<u>19.87</u> 19.56	$C_{14}H_{31}N_4P$
7	75	[61—64 (hexane)]	71.8 (C ₆ H ₆)	13.62 13.93	25.51 25.20	$C_7H_{19}N_4PS$
8	59	*	13.6 (CH ₂ Cl ₂)	10.60 10.49	23.96 23.71	$C_{14}H_{26}N_5P$
9	60	[98-100 (hexane)]	34.8 (C ₆ H ₆)	10.45 10.74	9.62 9.71	$C_{15}H_{17}N_2PS$
10	48	•	31.7 (CH ₂ Cl ₂)	10.73 10.24	18.95 18.63	$C_{14}H_{31}N_4OP$
11a	85	•	87.5 (hexane)	<u>11.65</u> 11.80	21.12 21.37	$C_{10}H_{23}N_4PS$
11b	79	*	82.7 (C ₆ H ₆)	<u>9.53</u> 9.72	17.21 17.59	$C_{14}H_{31}N_4PS$
11c	66	*	92.6 (C ₆ H ₆)	<u>11.45</u> 11.72	10.39 10.60	$C_{10}H_{21}N_2O_2P$
12a	58	[160 (decomp.) (Pr ⁱ OH)]	83.8 (MeOH)	<u>7.63</u> 7.66	13.79 13.86	$C_{11}H_{26}IN_4PS$
12b	51	*	79.9 (MeCN)	6.50 6.73	12.35 12.17	C ₁₅ H ₃₄ IN ₄ PS
13	43	[85—87 (Pr ⁱ OH)]	51.6 (McCN)	8.29 8.50	15.07 15.38	C ₈ H ₂₂ IN ₄ PS
14	64	*	41.7 (EtOH)	7.49 7.08	16.32 16.01	$C_{15}H_{29}IN_5P$

^{*} Oil.

However, according to NMR data, all the phosphory-lated hydrazones that we synthesized exist as a single isomer. We suggest that all of them assume the thermodynamically more favorable E-configuration at the C=N bond. In the case of crotonaldehyde derivatives, the trans-configuration at the C=C bond is realized, as indicated by the magnitudes of the spin-spin coupling constants of the phosphorus atom with the $H(\alpha)$ proton and with the azomethine carbon atom. For example, for compound 10, these values are 20 and 10.2 Hz, respectively.

(RP is a P-centered substituent)

Experimental

³¹P NMR spectra were recorded on a Bruker WP-200 instrument (85% H₃PO₄ as the external standard); ¹H and ¹³C NMR spectra were measured on a Gemini-200 spectrometer (Me₄Si as the internal standard). Physicochemical characteristics, spectral parameters, and the data of elemental analysis for compounds 2, 3, and 5–14 are listed in Tables 1 and 2. All the operations with compounds of P^{III} were carried out in an atmosphere of dry argon.

N,N-Dimethylhydrazonomethylbis(dimethylamino)phosphine (2). A solution of PBr₃ (0.01 mol) in 5 mL of pyridine was added with stirring and cooling to 0 °C to a solution of formaldehyde N,N-dimethylhydrazone (0.01 mol) in 25 mL of petroleum ether. After 5 h, a solution of HNMe₂ (0.05 mol) in 10 mL of petroleum ether was added to the reaction mixture at 0 °C; the precipitate was separated, the filtrate was concentrated, and the residue was distilled.

N,N-Dimethylhydrazonomethyl (diphenyl)phosphine (3). Ph₂PCl (0.01 mol) was added with stirring and cooling to 0 °C to a mixture of formaldehyde N,N-dimethylhydrazone

Table 2. ¹H and ¹³C NMR spectra of compounds 2, 3, and 5-14

Compo- und	Solvent	δH (<i>J</i> /Hz)	δC (<i>J</i> /Hz)
2	C ₆ D ₆	2.68 (d, 12 H, PNCH ₃ , $J_{PH} = 9.4$); 2.83 (d, 6 H, NNCH ₃ , $J_{HH} = 0.6$); 6.71 (dd, 1 H, CH, $J_{PH} = 28.8$, $J_{HH} = 0.6$)	41.59 (d, PNCH ₃ , $J_{PC} = 14.5$); 42.43 (s, NN(CH ₃) ₂); 136.36 (d, CH, $J_{PC} = 22.3$)
3	C ₆ D ₆	2.94 (s, 6 H, NNCH ₃); 7.00 (d, 1 H, CH, $J_{PH} = 8.6$); 7.35 (m, 10 H, Ph)	42.62 (s, CH ₃); 128.95 (d, m -C(Ph), $J_{PC} = 6.2$); 129.09 (d, p -C(Ph), $J_{PC} = 8.2$); 132.76 (d, CH, $J_{PC} = 9.2$); 133.26 (d, o -C(Ph), $J_{PC} = 18.1$); 138.83 (d, $ipso$ -C(Ph), $J_{PC} = 8.24$)
5	CD ₃ CN	1.25 (t, 6 H, OCH ₂ CH ₃ , J_{HH} = 7.0); 1.90 (d, 3 H, C(β)CH ₃ , J_{PH} = 8.0); 2.94 (s, 6 H, NNCH ₃); 3.86 (m, 4 H, OCH ₂ CH ₃); 6.64 (m, 1 H, C(α)H); 7.13 (d, 1 H, CH=N, J_{HH} = 9.4)	11.81 (d, $C(\beta)CH_3$, $J_{PC} = 14.5$); 17.07 (d, OCH_2CH_3 , $J_{PC} = 5.5$); 42.45 (s, $NNCH_3$); 62.28 (d, OCH_2CH_3 , $J_{PC} = 13.4$); 129.77 (d, $C(\alpha)$, $J_{PC} = 13.5$); 133.89 (d, $C(\beta)$, $J_{PC} = 37.4$); 138.07 (d, $CH=N$, $J_{PC} = 19.6$)
62	CD₃CN	1.80 (dd, 3 H, CCH ₃ , J_{PH} = 8.4, J_{HH} = 1.4); 2.67 (d, 12 H, PNCH ₃ , J_{PH} = 9.0); 2.85 (s, 6 H, NNCH ₃); 6.21 (m, 1 H, C(α)H); 7.22 (d, 1 H, CH=N, J_{HH} = 9.4)	14.0 (d, CCH ₃ , J_{PC} = 23.3); 41.97 (d, PNCH ₃ , J_{PC} = 15.3); 42.95 (s, NNCH ₃); 132.16 (d, C(β), J_{PC} = 14.9); 132.62 (d, C(α), J_{PC} = 4.3); 136.67 (s, CH=N)
6b	CD₃CN	1.05 (t, 12 H, NCH ₂ CH ₃ , $J_{HH} = 7.2$); 1.80 (d, 3 H, CCH ₃ , $J_{PH} = 8.4$, $J_{HH} = 1.4$); 2.83 (s, 6 H, NNCH ₃); 3.01 (dq, 8 H, NCH ₂ CH ₃ , $J_{PH} = 9.5$, $J_{HH} = 7.2$); 6.28 (m, 1 H, C(α)H); 7.20 (d, 1 H, CH=N, $J_{HH} = 9.4$)	13.86 (d, $C(\beta)\subseteq H_3$, $J_{PC} = 23.5$); 14.29 (d, $NCH_2\subseteq H_3$, $J_{PC} = 3.0$); 42.24 (s, $NNCH_3$); 42.94 (d, $N\subseteq H_2\subset H_3$, $J_{PC} = 16.0$); 130.73 (d, $C(\beta)$, $J_{PC} = 15.9$); 132.19 (d, $C(\alpha)$, $J_{PC} = 3.6$); 137.04 (d, $CH=N$, $J_{PC} = 3.0$)
7	CDCI ₃	2.66 (d, 12 H, PNCH ₃ , J_{PH} = 12.0); 3.03 (s, 6 H, NNCH ₃); 6.40 (d, 1 H, CH=N, J_{PH} = 46.8)	36.77 (d, PNCH ₃ , $J_{PC} = 2.76$); 41.95 (s, NNCH ₃); 123.28 (d, CH=N, $J_{PC} = 168.5$)
8	CD3OD	2.19 (s, 3 H, 4-C $_{H3}$ C ₆ H ₄); 2.69 (d, 12 H, PNCH ₃ , $J_{PH} = 9.9$); 3.00 (s, 6 H, NNCH ₃); 6.41 (d, 1 H, CH=N, $J_{PH} = 42.0$); 6.74 (d, 2 H, m -H(Ph), $J_{HH} = 9.6$); 6.88 (d, 2 H, o -H(Ph), $J_{HH} = 9.6$)	
9	CDCl ₃	3.04 (s, 6 H, NNCH ₃); 6.69 (d, 1 H, CH=N, $J_{PH} = 43.8$); 7.45 (m, 6 H, m-H(Ph), p-H(Ph)); 7.87 (m, 4 H, o-H(Ph))	42.45 (s, NNCH ₃); 121.75 (d, CH=N, J_{PC} = 159.45); 128.60 (d, m -C(Ph), J_{PC} = 12.6); 131.54 (d, p -C(Ph), J_{PC} = 2.9); 132.42 (d, o -C(Ph), J_{PC} = 10.7); 133.84 (d, ipso-C(Ph), J_{PC} = 87.0)
10	CDCl ₃	1.11 (t, 12 H, NCH ₂ CH ₃ , J_{HH} = 7.0); 1.97 (dd, 3 H, C(β)CH ₃ , J_{PH} = 13.4, J_{HH} = 1.4); 3.01 (s, 6 H, NNCH ₃); 3.07 (m, 8 H, NCH ₂ CH ₃); 6.78 (m, 1 H, C(α)H); 7.16 (d, 1 H, CH=N, J_{HH} = 9.6)	13.96 (d, NCH ₂ CH ₃ , J_{PC} = 2.9); 13.97 (d, C(β)CH ₃ , J_{PC} = 16.4); 38.52 (d, NCH ₂ CH ₃ , J_{PC} = 4.4); 42.66 (s, NNCH ₃); 126.84 (d, C(β), J_{PC} = 153.16); 130.24 (d, C(α), J_{PC} = 23.6); 137.55 (d, CH=N, J_{PC} = 10.6)

Table 2 (continued)

Compo- und	Solvent	δΗ (<i>J/</i> Hz)	δC (J/Hz)
i 1a	CDCl ₃	2.03 (d, 3 H, C(β)CH ₃ , J_{PH} = 14.0); 2.63 (d, 12 H, PNCH ₃ , J_{PH} = 11.6); 3.02 (s, 6 H, NNCH ₃); 6.89 (m, 1 H, C(α)H); 7.03 (d, 1 H, CH=N, J_{HH} = 9.6)	13.82 (d, C(β)CH ₃ , J_{PC} = 12.1); 37.00 (d, PNCH ₃ , J_{PC} = 3.1); 42.49 (s, NNCH ₃); 125.40 (d, C(β), J_{PC} = 123.0); 128.29 (d, C(α), J_{PC} = 22.8); 137.21 (d, CH=N, J_{PC} = 10.5)
116	CDCl ₃	1.11 (t, 12 H, NCH ₂ CH ₃ , $J_{HH} = 7.0$); 2.01 (d, 3 H, C(β)CH ₃ , $J_{PH} = 15.6$); 2.99 (s, 6 H, NNCH ₃); 3.14 (m, 8 H, NCH ₂ CH ₃); 6.77 (m, 1 H, C(α)H); 7.00 (d, 1 H, CH=N, $J_{HH} = 9.4$)	14.15 (d, NCH ₂ CH ₃ , J_{PC} = 3.4); 14.65 (d, C(β)CH ₃ , J_{PC} = 13.6); 39.90 (d, NCH ₂ CH ₃ , J_{PC} = 4.5); 42.96 (s, NNCH ₃); 128.19 (d, C(β), J_{PC} = 123.8); 129.41 (d, C(α), J_{PC} = 22.8); 136.07 (d, CH=N, J_{PC} = 9.9)
11c	CDCl ₃	1.31 (t, 6 H, OCH ₂ CH ₃ , J_{HH} = 7.0); 1.99 (d, 3 H, C(β)CH ₃ , J_{PH} = 15.4); 3.02 (s, 6 H, NNCH ₃); 4.08 (m, 4 H, OCH ₂ CH ₃); 7.02 (m, 1 H, C(α)H); 7.20 (d, 1 H, CH=N, J_{HH} = 9.4)	12.59 (d, $C(\beta)CH_3$, $J_{PC} = 10.3$); 16.12 (d, OCH_2CH_3 , $J_{PC} = 7.3$); 42.42 (s, $NNCH_3$); 62.29 (d, OCH_2CH_3 , $J_{PC} = 5.8$); 125.08 (d, $C(\beta)$, $J_{PC} = 123.4$); 127.03 (d, $C(\alpha)$, $J_{PC} = 27.4$): 139.42 (d, $CH=N$, $J_{PC} = 15.7$)
1224	CD ₃ CN	2.28 (dd, 3 H, C(β)CH ₃ , J_{PH} = 14.4, J_{HH} = 1.5); 2.63 (d, 12 H, PNCH ₃ , J_{PH} = 11.7); 3.53 (s, 9 H, NNCH ₃); 6.97 (m, 1 H, C(α)H); 8.92 (d, 1 H, CH=N, J_{HH} = 9.3)	15.20 (d, $C(\beta)CH_3$, $J_{PC} = 8.2$); 36.27 (d, $PNCH_3$, $J_{PC} = 3.1$); 55.44 (s, $NNCH_3$); 130.14 (d, $C(\alpha)$, $J_{PC} = 13.6$); 155.45 (d, $C(\beta)$, $J_{PC} = 111.0$); 161.03 (d, $CH=N$, $J_{PC} = 22.2$)
12b	CD ₃ CN	1.11 (t, 12 H, NCH ₂ CH ₃ , J_{HH} = 7.0); 1.97 (dd, 3 H, C(β)CH ₃ , J_{PH} = 14.6, J_{HH} = 1.4); 3.11 (m, 8 H, NCH ₂ CH ₃); 3.51 (s, 9 H, NNCH ₃); 6.81 (m, 1 H, C(α)H); 8.82 (d, 1 H, CH=N, J_{HH} = 9.4)	13.45 (d, NCH ₂ CH ₃ , J_{PC} = 3.2); 16.92 (d, C(β)CH ₃ , J_{PC} = 8.0); 39.26 (d, NCH ₂ CH ₃ , J_{PC} = 4.2); 56.16 (s, NNCH ₃); 128.33 (d, C(α), J_{PC} = 13.2); 154.86 (d, C(β), J_{PC} = 110.8); 161.63 (d, CH=N, J_{PC} = 22.0)
13 ^b	CD ₃ CN	2.48 (d, 3 H, SCH ₃ , J_{PH} = 15.2); 2.93 (d, 12 H, PNCH ₃ , J_{PH} = 11.4); 3.37 (s, 6 H, NNCH ₃); 7.01 (d, 1 H, CH=N, J_{PH} = 54.2)	12.19 (d, SMe, $J_{PC} = 3.5$); 37.95 (d, PNCH ₃ . $J_{PC} = 3.0$); 107.62 (d, CH=N, $J_{PC} = 183.1$)
14	CD3OD	2.36 (s, 3 H, 4-C $_{\rm H_3}$ C ₆ H ₄); 2.72 (d, 12 H, PNCH ₃ $J_{\rm PH}$ = 10.2); 3.15 (d, 3 H, $H_{\rm 3}$ CNC ₆ H ₄ CH ₃ -4, $J_{\rm PH}$ = 8.8); 3.20 (s, 6 H, NNCH ₃); 6.30 (d, 1 H, CH=N, $J_{\rm PH}$ = 48.0); 7.16 (s, 4 H, o -H(Ph), m -H(

^a The ¹H NMR spectrum was recorded in methanol-d₄.

(0.01 mol), NEt₃ (0.02 mol), and 25 mL of pyridine, and the mixture was allowed to stand for ~48 h at 20 °C. The precipitate that formed was separated, and the filtrate was diluted with 25 mL of benzene and filtered. The solvents were evaporated, and the residue was recrystallized.

4-(N,N-Dimethylhydrazono)but-2-en-2-yl(diethoxy)phosphine (5). A solution of PBr₃ (0.01 mol) in 20 mL of petroleum ether was added dropwise with stirring and cooling to 0 °C to a mixture of crotonaldehyde N,N-dimethylhydrazone (0.01 mol), NEt₃ (0.02 mol), and 60 mL of petroleum ether, and the mixture was allowed to stand for 12 h. Then anhydrous EtOH (0.05 mol) was added with stirring and cooling to -5 °C. After 3 h, the precipitate was filtered off, the solvent was evaporated, and the residue was distilled in vacuo.

4-(N,N-Dimethylhydrazono)but-2-en-2-ylbis(dimethylamino)phosphine (6a). A solution of PBr₃ (0.01 mol) in 20 mL of heptane was added dropwise with stirring and cooling to 0 °C to a mixture of crotonaldehyde hydrazone (0.01 mol), NEt₃ (0.02 mol), and 60 mL of petroleum ether, and the mixture was allowed to stand for 12 h. Then HNMe₂ (0.05 mol) was added with stirring and cooling to -5 °C. After 2 h, the precipitate was filtered off, the solvent was evaporated, and the residue was distilled in vacuo.

4-(N,N-Dimethylhydrazono)but-2-en-2-ylbis(diethylami-no)phosphine (6b) was prepared similarly to compound 6a.

N,N-Dimethylhydrazonomethylbis(dimethylamino)phosphine sulfide (7). Finely powdered sulfur (0.01 mol) was added to a solution of compound 2 (0.01 mol) in 40 mL of benzene, and the mixture was allowed to stand for ~24 h at 20 °C. The solvent was evaporated in vacuo, and the residue was recrystallized.

N,N-Dimethylhydrazonomethyl-N-(p-tolyl)phosphonimidic acid bis(N,N-dimethylamide) (8). p-Tolylazide (0.01 mol) was added to a solution of compound 2 (0.01 mol) in 40 mL of benzene, the mixture was refluxed for 2 h, the solvent was evaporated, and the product was reprecipitated from benzene by petroleum ether. The oil was dried in vacuo.

N,N-Dimethylhydrazonomethyl(diphenyl)phosphine sulfide (9). Finely powdered sulfur (0.01 mol) was added to a solution of compound 3 (0.01 mol) in 40 mL of benzene, the mixture was refluxed for 3 h, the solvent was evaporated, and the residue was recrystallized.

4-(N,N-Dimethylhydrazono)but-2-en-2-ylbis(diethylamino)phosphine oxide (10). A solution of C₂Cl₆ (0.01 mol) in 20 mL of heptane was added to a solution of compound 6b (0.01 mol) in 40 mL of heptane. The resulting oil was separated, washed with 20 mL of heptane, and dissolved in 20 mL of CHCl₃. The solution was shaken with a saturated aqueous solution of NaHCO₃. The organic layer was separated, washed with water, and dried over Na₂SO₄. The solvent was evaporated, and the oil was dried in vacuo.

^b The ¹H NMR spectrum was recorded in CDCl₃.

4-(N,N-Dimethylhydrazono)but-2-en-2-ylbis(dimethylamino)phosphine sulfide (11a). Finely powdered sulfur (0.01 mol) was added to a solution of compound 6a (0.01 mol) in 40 mL of heptane. After 3 h, the resulting oil was separated, washed with 5 mL of heptane, and dried in vacuo.

4-(N,N-Dimethylhydrazono)but-2-en-2-ylbis(diethylamino)phosphine sulfide (11b) was prepared similarly to compound 11a.

Diethyl 4-(N,N-dimethylhydrazono)but-2-en-2-ylphosphonothioate (11c). Finely powdered sulfur (0.01 mol) was added to a solution of compound 5 (0.01 mol) in 40 mL of benzene, and the mixture was refluxed for 3 h. Heptane (60 mL) was added, and the oil formed was dried in vacuo.

N-{3-[Bis(dimethylamino)thiophosphoryl]but-2-enylidene}-N, N-trimethylhydrazinium iodide (12a). Methyl iodide (0.03 mol) was added to a solution of compound 11a (0.01 mol) in 30 mL of benzene, and the mixture was refluxed for 6 h. After cooling the reaction mixture to room temperature, 30 mL of Et₂O was added, and the resulting precipitate was separated and recrystallized.

 $N'-\{3-\{Bis(diethylamino)thiophosphoryl\}but-2-enylidene\}-N,N,N-trimethylhydrazinium iodide (12b) was prepared similarly to compound 12a.$

N,N-Dimethylhydrazonomethylbis(dimethylamino)(methylthio)phosphonium iodide (13). Methyl iodide (0.02 mol) was added to a solution of compound 7 (0.01 mol) in 40 mL of benzene, and the mixture was allowed to stand for 6 h at 20 °C. The product was precipitated from a benzene solution with Et_2O , filtered off, and recrystallized.

N,N-Dimethylhydrazonomethylbis(dimethylamino)(methyl-4-tolylamino)phosphonium iodide (14). A mixture of compound 8 (0.01 mol) and MeI (0.02 mol) in 40 mL of benzene

was refluxed for 4 h. The resulting oil was separated, washed with benzene (2×20 mL), and dried in vacuo.

References

- M. I. Kabachnik and P. A. Rossiiskaya, Izv. Akad. Nauk SSSR, OKhN [Bull. USSR Acad. Sci., Div. Chem. Sci.], 1945, 364 (in Russian).
- Yu. A. Zhdanov, L. A. Uzlova, and Z. I. Glebova, Usp. Khim., 1980, 49, 1730 [Russ. Chem. Rev., 1980, 49 (Engl. Transl.)].
- S. P. Konotopova, V. N. Chistokletov, and A. A. Petrov, Zh. Obshch. Khim., 1978, 48, 2416 [J. Gen. Chem. USSR, 1978, 48 (Engl. Transl.)].
- G. Baccolini, M. Faggiano, and P. E. Todesco, J. Chem. Soc., Perkin Trans. 1, 1979, 2329.
- M. P. Sokolov, B. I. Buzykin, and T. A. Zyablikova, Zh. Obshch. Khim., 1990, 60, 1293 [J. Gen. Chem. USSR, 1990, 60 (Engl. Transl.)].
- 6. R. Brehme, Chem. Ber., 1990, 123, 2039.
- Y. Kamitori, M. Hojo, R. Mastida, T. Yoshida, S. Ohara, K. Yamada, and N. Yoshikawa, J. Org. Chem., 1988, 53, 519.
- A. A. Tolmachev, L. N. Potikha, A. A. Yurchenko, E. S. Kozlov, and A. M. Pinchuk, Zh. Obshch. Khim., 1991, 61, 2358 [J. Gen. Chem. USSR, 1991, 61 (Engl. Transl.)].
- A. A. Tolmachev, A. S. Merkulov, A. A. Yurchenko, and A. M. Pinchuk, Zh. Obshch. Khim., 1997, 67, 1033 [Russ. J. Gen. Chem., 1997, 67 (Engl. Transl.)].
- Th. Severin, G. Wanninger, and H. Lerche, Chem. Ber., 1984, 117, 2875.

Received March 19, 1998